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Abstract. We examine the complexity of two minimum spanning tree problems with rational ob-
jective functions. We show that the Minimum Ratio Spanning Tree problem is NP-hard when the
denominator is unrestricted in sign, thereby sharpening a previous complexity result. We then con-
sider an extension of this problem where the objective function is the sum of two linear ratios whose
numerators and denominators are strictly positive. This problem is shown to be NP-hard as well. We
conclude with some results characterizing sufficient conditions for a globally optimal solution.
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1. Introduction

The Minimum Ratio Spanning Tree (MRST) problem was introduced by Chan-
drasekaran [2]. It is the problem of finding a minimum spanning tree when the
objective function is the ratio of two linear cost functions (e.g., a ratio of cost to
weight). Chandrasekaran demonstrated the failure of the greedy algorithm to solve
this problem and gave a polynomial time algorithm for solving the MRST under
the restriction that the denominator remained strictly positive. The algorithm is
essentially Newton’s algorithm as articulated in [3]. If the denominator takes on
negative values, he showed that the problem became NP-complete.
More recently, Skiscim and Palocsay [7] considered an extension of the MRST

problem wherein the objective function was the sum of two ratios, each comprised
of linear functions. They presented an algorithm to find the global optimal solution
to this problem by adapting the algorithm of Falk and Palocsay [5]. The algorithm
required the solution of NP-hard subproblems. Based on this it was conjectured
that the Two Ratio Minimum Spanning Tree problem (TRMST) was also NP-hard.
In this paper we demonstrate that the MRST is NP-hard when the denominator

takes on negative values thereby sharpening the earlier complexity result. We also
show that TRMST is NP-hard when the numerator and denominator of both ratios
are strictly positive. The paper concludes with some results concerning conditions
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for an optimal solution and attempts to provide some insight into what makes the
TRMST so difficult.

2. Preliminaries

The MRST problem is a network optimization problem defined on an undirected
network ������ where � denotes the set of vertices or nodes and � denotes the
set of edges or arcs connecting the nodes. Each arc i∈� has a cost ai>0 and
a weight bi >0. Let � denote the set of spanning trees of ������. The first
problem, termed �1, is to find a subset of arcs forming a spanning tree � ∈�
such that

z=min
� ∈�

∑
i∈� ai∑
i∈� bi

	 (1)

The TRMST is similarly defined. In addition to the cost and weight ai>0 and
bi >0, we have the cost and weights ci >0 and di>0 for all i∈�, respectively.
Again, the problem is to find a subset of arcs forming a spanning tree � ∈� such
that

z=min
� ∈�

∑
i∈� ai∑
i∈� bi

+
∑

i∈� ci∑
i∈� di

(2)

We call this problem�2. Throughout, wemake use of the followingNP-complete
problem BIPARTITION:

INSTANCE A finite set � of � positive integers s1�s2�··· �sn.
QUERY: Does there exist a subset 	 of the index set �1�2�			�n� of

� such that

∑
i∈	

si=
1
2

n∑
i=1

si? (3)

3. Complexity of the MRST

We examine the MRST first. Assume that the denominator in the objective func-
tion of �1 is unrestricted in sign. To study its complexity, we express MINIMUM
RATIO SPANNING TREE as the following optimization problem:

INSTANCE: A graph ������ with ���=n nodes and �A�=m arcs and m pairs
of real numbers �ai�bi� with ai>0 for each i∈� n nodes and �A�
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Figure 1. Basic building block for the constructed graph �.

Figure 2. Constructed graph �.

PROBLEM: Find a spanning tree such that

z=min
� ∈�

∑
i∈T ai∑
i∈T bi

(4)

THEOREM 1. MINIMUM RATIO SPANNING TREE is NP–hard.

Proof. We shall use a reduction from the NP–complete problem BIPARTITION
following along the lines of [6]. Let s1�s2�			�sn be any instance of BIPARTI-
TION. We construct the following instance of MINIMUM RATIO SPANNING
TREE: Let M=∑n

i=1si so that the value of a feasible bipartition is
1
2M . Let t be

a positive integer. Define a graph ������ with ���=2n+1 nodes and ���=3n
arcs. The basic building block of our graph is the triangle shown in Figure 1.
Each arc carries a pair of real numbers �ai�bi� formed from the instance of

BIPARTITION and the constants t and M . The graph � is constructed by string-
ing together the triangles along the base arcs as shown in Figure 2. The arcs are
numbered from 1 to n, (left to right) along the base arcs so that the values si are in
one-to-one correspondence with indices of the base arcs. The arcs representing the
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legs of each triangle are numbered from n+1 to 3n, (left-to-right) across the set
of triangles.
The base arcs of the triangle, denoted by the index set 
=�1�			�n�, have values

ai =
1
2n

(5)

bi =
2tM−1

2n
−4tsi (6)

The legs of the triangle are denoted by the index set �=�n+1�			�3n� and have
values

ai =
1
2n

(7)

bi =
2tM−1

2n
	 (8)

It should be clear that we can select any subset of the si by traversing the legs of
the triangles and including arcs from
 as needed, and that any spanning tree must
include two arcs from each triangle making up �. Therefore, every spanning tree
will contain a subset of arcs 
′ ⊆
 and a subset of arcs �′ ⊂�. The set �′ always
contains at least n arcs and we must have �
′ ∪�′�=2n.
We claim there exists a subset 	 of the index set �1�2�			�n� corresponding to

a bipartition if and only if we can find a spanning tree � that minimizes

z=
∑

i∈� ai∑
i∈� bi

∀� ∈�	 (9)

For any spanning tree � ∈� on our constructed graph, the numerator of Eq.
(9) is equal to 1. The value of the denominator is

D=∑
i∈�′

2tM−1
2n

+∑
i∈
′

(
2tM−1

2n
−4tsi

)
=2t

n∑
i=1

si−4t
∑
i∈
′

si−1	 (10)

Setting 
′ =	 satisfies Eq. (3) with z∗=−1. If the denominator is less than
−1 then z>−1 and if it is positive z>0; as it is odd, it can never be equal to 0.
Thus, we can recognize BIPARTITION if and only if we can solve the optimization
problem MINIMUM RATIO SPANNING TREE.

4. Complexity of the TRMST

Now consider the TRMST problem.We express TWORATIOMINIMUMSPAN-
NING TREE as the following optimization problem:

INSTANCE: A graph ������ with ���=n nodes and ���=m arcs and a set of
4 real numbers �ai�bi�ci�di� all positive, for each i∈�.
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PROBLEM: Find a spanning tree � ∈� such that

z=min
� ∈�

[∑
i∈� ai∑
i∈� bi

+
∑

i∈� ci∑
i∈� di

]
	 (11)

THEOREM 2. TWO RATIO MINIMUM SPANNING TREE is NP-hard.

Proof.We shall use a reduction from BIPARTITION using the same construction
of � as in the previous theorem. Let s1�s2�			�sn be any instance of BIPARTI-
TION. We construct the following instance of TWO RATIO MINIMUM SPAN-
NING TREE: Let M=∑n

i=1si so that the value of a feasible bipartition is 1
2M .

Let k and B be positive integers. Each arc carries 4 positive real numbers �ai�bi�
and �ci�di� formed from the instance of BIPARTITION and the constants k and B.
The base arcs of the triangle are denoted by the index set 
=�1�			�n� and have
values

ai = B� (12)

bi = 2B
k+2nsi
2k+M

� (13)

ci = 2B
k+2nsi
2k+M

� (14)

di = B	 (15)

The legs of the triangle correspond to the index set �=�n+1�			�3n� with
values

ai = B� (16)

bi = 2B
k

2k+M
� (17)

ci = 2B
k

2k+M
� (18)

di = B	 (19)

The basic building block of the graph � is shown in Figure 3 with the construction
as shown in Figure 2.
We claim there exists a subset 	 of the index set �1�2�			�n� satisfying Eq.

(3) if and only if we can find a spanning tree � ∈� such that

z=min
� ∈�

∑
i∈� ai∑
i∈� bi

+
∑

i∈� ci∑
i∈� di

(20)

Since the two ratios are reciprocals of one another, we need only examine r1.
The value of the first ratio’s numerator for any spanning tree � ∈� is∑

i∈
′∪�′
B=2Bn (21)
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Figure 3. Building block for the graph �.

since �
′ ∪�′�=2n. The value of the denominator for r1 is∑
i∈
′

2B
k+2nsi
2k+M

+∑
i∈�′

2B
k

2k+M
(22)

= ∑
i∈
′

2B
2nsi

2k+M
+ ∑

i∈
′∪�′
2B

k

2k+M
(23)

= 4Bn
(∑

i∈
′ si
2k+M

+ k

2k+M

)
(24)

= 4Bn
(
k+∑i∈
′ si
2k+M

)
	 (25)

Taking account of the numerator, we have

r1 =
2k+M

2�k+∑i∈
′ si�
(26)

= k+ 1
2M

k+∑i∈
′ si
	 (27)

Therefore,

z= k+ 1
2M

k+∑i∈
′ si
+ k+∑i∈
′ si

k+ 1
2M

(28)

is the value of any spanning tree � ∈�, depending on our choice of 
′. Choosing

′ =	 , a bipartition, yields the value z∗=2. We claim this to be the minimum
value of any spanning tree on our graph �. We therefore need to show that any
other spanning tree on � gives a value z>2.
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Suppose we choose 
′ ⊆
 such that
∑

i∈
′ si >
1
2M . That is,

∑
i∈
′ si=

1
2M+l for some 0<l� 1

2M . We can then express Eq. (28) as

z= k+ 1
2M

k+ 1
2M+l

+ k+ 1
2M+l

k+ 1
2M

	 (29)

The sum of the two ratios in this case is

z=2+ 2l
2k+M

− 2l
2k+M+2l

(30)

and so z>2. Choosing
∑

i∈
′ si <
1
2M , we have

z = k+ 1
2M

k+ 1
2M−l

+ k+ 1
2M−l

k+ 1
2M

(31)

= 2+ 2l

2k+M−2l
− 2l
2k+M

(32)

and z>2 in this case as well. Hence, we can recognize BIPARTITION if and only
if we can solve the optimization problem TWO RATIO MINIMUM SPANNING
TREE.

5. Optimality Considerations

Necessary and sufficient conditions for an optimal solution to the MRST are well
known [2]. Assuming the denominator is always positive, the following parametric
version of the problem is used in algorithmic solutions:

min
� ∈�

[∑
i∈�

ai−�
∑
i∈�

bi

]
	 (33)

Now, pick a real number �̄ and evaluate

��̄�=min
� ∈�

[∑
i∈�

ai− �̄
∑
i∈�

bi

]
	 (34)

Finding the MST with respect to these new cost values results in some spanning
tree �̄ . If ��̄�=0, then z∗= �̄ is the optimal value of the MRST with the
optimal tree being �̄ . This general procedure, proposed by Dinklebach [3], applies
to quasi–convex fractional programs.
An attempt was made to extend this result to problems involving more than one

ratio [1]. Indeed, it seems natural to extend the parametric equation to multiple
ratios. In the context of the TRMST, this results in

H���=min
� ∈�

[(∑
i∈�

ai−�1
∑
i∈�

bi

)
+
(∑

i∈�
ci−�2

∑
i∈�

di

)]
(35)
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where �=��1��2� are the values of the two ratios. A necessary and sufficient
condition was put forth in [1] claiming that �∗ was the optimal solution to Eq.
(35) with an optimal spanning tree � ∗ if and only if �∗ solved ��∗�=0. A
direct counter-example for linear programs, presented in [5] showed this was not
necessarily true. A sufficient condition for an optimal solution to the problem of
optimizing a sum of ratios of two linear functions was subsequently established in
[5].
In the context of our problem, we attempt to show why the postulated necessary

and sufficient conditions of [1] fail. We also attempt to provide some insight into
why the TRMST is such a hard problem. For completeness, we reprise some of the
results of [5].

5.1. THE IMAGE SPACE

Imagine we enumerated all the spanning trees on � and recorded the values for
each ratio forming a set �. Expressed formally, we have

�=
{
�r1�r2��r1=

∑
i∈� ai∑
i∈� bi

�r2=
∑

i∈� ci∑
i∈� di

�∀� ∈�
}
	 (36)

So each spanning tree � ∈� maps non-uniquely to a point r=�r1�r2�. By plotting
r1 against r2, we have a solution space in which the linear objective function r1+r2
can be minimized. Initial upper and lower bounds can be easily identified and using
these, a triangle in �-space can be constructed that contains the optimal solution.
Figure 4 illustrates these ideas.
Easily, the point u=�minr1�minr2� provides a lower bound on the optimal

solution. Now evaluate each of these points to get the value of the other ratio.
This produces two other points l=�l1�l2� and v̂=�v̂1�v̂2�, and bounds a region
guaranteed to contain the optimal solution. This is shown as the shaded region in
Figure 4.
We also get two upper bounds–the iso-contour value passing through the points

l and ṽ and one passing through the points l and v, the latter point being determined
by intersection. We pick the smaller of these as the initial upper bound. This is
labeled f 0

up.
The basis for the Image Space algorithm is now in place. Following our ex-

ample, minimizing the second ratio while imposing the constraint r1�v results in
an improved upper and lower bound (e.g. f 1

up as shown in Figure 4). In effect, the
algorithm seeks to continually shrink the triangle by iteratively descending along
each axis of � (cf. [7] for the algorithmic details).

5.2. A SUFFICIENT CONDITION

A sufficient condition for the sum of ratios programming problem was set forth in
[5] using the parametric function��� and its properties with the image space�.
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Figure 4. Image space representation for the sum of ratios optimization problem. The
shaded region spans extreme points of � containing the optimal solution. Superscripts index
successive iterations of the Image Space algorithm.

We now state Falk and Palocsay’s sufficient condition for a globally optimal
solution to �2. In what follows, let ni�� ��di�� � denote the linear functions
associated with the numerator and denominator of the ith ratio �i= l�			�m� for
some � ∈�, respectively.

THEOREM 3. (Falk and Palocsay). Let u�l and v be the extreme points of a
triangular region in � determined by upper and lower bounds as described in
Section 5.1 with l being a feasible solution to �2. Let  be as defined in Section
5.3 with parameters u�l and v. If �l�=0, �u�>0 then z∗= l1+l2 is the
optimal objective function value for �2 and the spanning tree �

∗ corresponding to
l is an optimal solution to �2.

Turning back to the construction in Theorem 2, the optimal solution is the point
�=�1�1� corresponding to a bipartition. Applying the definition of ���∗ with
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�∗=�1�1�, we find

���∗ = min
� ∈�

[(∑
i∈�

ai−�∗
i

∑
i∈�

bi

)
+
(∑

i∈�
ci−�∗

2

∑
i∈�

di

)]
(37)

= k+ 1
2
M−

(
k+∑

i∈
i

si

)
+
(
k+∑

i∈
i

si

)
−
(
k+ 1

2
M

)
(38)

= 0 (39)

for any constructed spanning tree. The Almogy–Levin theorem again fails rather
spectacularly. Yet, it points up the difficulty of this class of problems.
Where could they have gone wrong? We attempt to provide some resolution

to this question in the context of the image space approach. Quite nicely, this
yields some insight into why the problem at hand is so hard. From [5], we have
the following properties of �r�.

THEOREM 4. �r� is (piecewise) concave over �m.

THEOREM 5. �r��0 for all r ∈�.

THEOREM 6. �r�<0 for every r such that ri >
ni��

∗�
di�� ∗� for all i.

Given these results, it is tempting to conclude that �r�=0 is a necessary and
sufficient condition for an optimal solution. As we now know, it is only sufficient.
The following, due to [4], characterizes a property of a subset of the points r ∈�.

DEFINITION 7. A point r is pareto–optimal if r̃�r and r̃ ∈�→ r̃=r .

In the discrete case, � is just a collection of points so this definition defines
the convex hull of � contained within the shaded region of Figure 4. In general,
Definition 7 describes the boundary of � where we will find the optimal solution
whether or not � is convex.
The next result characterizes �r� for points that do not conform to Definition

7. Although we express it in problem–specific terms, its general nature should be
quite obvious.

THEOREM 8. �r�<0 for any point r ∈� that is not pareto-optimal.

Proof. If r is not pareto-optimal, then there exists a point r̃ ∈� such that r̃�r
but r̃ �=r . So there is a j such that r̃j <rj but r̃i <ri for all i. Consequently, there
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Figure 5. Image space for TRMST corresponding to an instance of bipartition.

is an �̃ ∈� such that ni��̃ �

di��̃ �
for all i and

nj ��̃ �

dj ��̃ �
<rj . Therefore,

�r� = min
� ∈�

m∑
i=1

#ni�� �−ridi�� �$ (40)

�

m∑
i=1

#ni��̃ �−ridi��̃ �$ (41)

< 0 (42)

Let’s consider this result in the light of Theorem 2. For the TRMST instance
of Theorem 2, it is not difficult to see that every r ∈� is pareto-optimal. Suppose
we have the points r̃=�r̃1�r̃2� with r̃ ∈� and r=�r1�r2�, r ∈�. If r̃1�r1 then
r̃2�r2 because r̃1= 1

r̃2
. Therefore, r̃�r⇒ r̃=r .

As an example, consider a TRMST instance of Theorem 2 consisting of the
set S=�1�2�3�4� with k=1 (note that B drops out of the picture). Figure 5
shows� and the (piecewise) concave function�r� with�r�=0 at the optimal
point r∗=�1�1�.
This illustrates part of what makes this problems so hard. Any smart algorithm

would want to only consider pareto–optimal points as solution candidates and these
points are exponential in number. As observed in [7], the Image Space algorithm
tends to trace out the so-called pareto–optimal points. Clever heuristics can be used
to find a “good” solution (an upper bound) and so reduce the overall computational
effort, but in general, this is a tough problem to solve.
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6. Summary

In addition to demonstrating the complexity of these problems, we hope to have
shed some light into what makes the two-–ratio version of the MRST so difficult.
The efficacy of the sufficient condition, we hope, is now a bit clearer as well.
For pareto–optimal points, the only conclusion is that �r��0 and for all else

�r�<0. So perhaps this is where Almogy and Levin went wrong. They must
have recognized Theorem 8 and succumbed to the conclusion that �r�=0 for
the optimal point when in fact, it can be true for any pareto–optimal point.
The Falk–Palocsay sufficient condition and our analysis points out the now

obvious fact that the only candidates for an optimal solution are those lying along
the appropriate boundary of �. For the TRMST, our reduction to the bipartition
problem shows that the number of such points can be exponentially large.
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Note added in proof

Professor Francesco Maffoli informs us that his work published in the 5th Conference on Opti-
mization Techniques, Part 2, pp. 110–117, Lecture Notes in Computer Science, 4, Springer, 1973,
R. Conti, Antonis Ruberti (Eds.), was the first to propose a polynomial-time solution to the
Minimum Ratio Spanning Tree Problem.


